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ABSTRACT 
Volunteer computing lets consumers donate the 

unused processing and storage capacity of their 

computing devices (desktop, laptop, mobile) to 

science research projects.  It can provide Exa-scale 

high-throughput computing, and it offers a scalable 

and sustainable alternative to data-center computing.  

Since its inception in 2004, BOINC-based volunteer 

computing has used a “free-market” model in which 

scientists create and promote projects, and volunteers 

choose from among these projects.  Problems inherent 

in this model – notably the risk in creating a project – 

have limited the adoption of volunteer computing. To 

move beyond these limits, we developed a new model 

in which volunteers register for science areas rather 

than for projects, and a central “coordinator” allocates 

computing resources to projects. 

CCS CONCEPTS 

10010147.10010919: Computing methodologies, 

distributed computing methodologies. 

KEYWORDS 

Volunteer computing, high-throughput computing, 

scientific computing. 

 

1   Introduction 

Volunteer computing (VC) is the use of consumer 

digital devices, such as desktop and laptop computers, 

tablets, and smartphones, for high-throughput 

scientific computing.  People participate in VC by 

installing a program that downloads and executes jobs 

from servers operated by science projects.  About 

700,000 devices are currently participating.  These 

devices have about 4 million CPU cores and 560,000 

GPUs, and collectively provide an average throughput 

of 93 PetaFLOPS. 

There are currently about 30 VC projects in many 

scientific areas and at many institutions.  The research 

enabled by VC has resulted in numerous papers in 

Nature, Science, PNAS, Physical Review, Proteins, 

PloS Biology, Bioinformatics, J. of Mol. Biol., J. 

Chem. Phys, and other top journals [1]. 

Most VC projects use BOINC, an open-source 

middleware system [2].  BOINC is distributed under 

the LGPL v3 license and is available on Github.  This 

paper is concerned with the large-scale structure of 

BOINC-based VC: how scientists and volunteers 

participate, and how computing power is divided 

among scientists.   

BOINC originally used a “free market” model in which 

scientists compete for volunteers and computing 

power.  This model has turned out to have 

shortcomings which stunted the growth of VC.  More 

recently we have designed and implemented a new 

“coordinated” model in which – although volunteers 

still have a significant voice – the allocation of 

computing power is done centrally. 

We have implemented the coordinated model in a 

system called Science United 

(https://scienceunited.org).  This paper presents the 

motivations for the coordinated model and describes 

the structure and implementation of Science United. 

2   Volunteer computing Models 

2.1  The free-market model 

In BOINC’s original model, scientists create and 

operate BOINC “projects” consisting of a web site and 

a job dispatcher. They recruit volunteers by publicizing 

their project and creating web pages describing their 

research. 

Volunteers discover VC via the publicity of a project 

P, which takes them to P’s web site.  This directs them 

to download the BOINC client software.  When the 

BOINC client starts, the volunteer is shown a list of 

projects, from which they select P, thus “attaching” the 

device to P.  The volunteer, perhaps at a later time, can 



survey and evaluate other available projects.  The 

BOINC client lets volunteers attach devices to multiple 

projects and control the division of resources among 

the projects. 

The intention of this model was to create a “market” in 

which scientists compete for computing power by 

promoting themselves and their research, and in which 

volunteers periodically evaluate the set of projects and 

decide, based on their personal values and interests, 

how to allocate their computing resources. 

More generally, our goal was that VC would divide 

computing power among scientists based on the 

aggregated knowledge and values of the public (rather 

than administrative policies).  This was inspired by the 

Iowa Political Stock Market, which used an analogous 

approach to predicting election results, with the 

viewpoint that “Markets allocate scarce resources to 

their most valued use” [3]. 

However, the free-market model did not achieve these 

goals.  In spite of the prospect of cheap computing 

power, relatively few scientists created BOINC 

projects.  Some of the reasons for this are inherent in 

the model.  In the free-market model, creating a project 

is risky: there's a substantial investment [7], with no 

guarantee of any return, since no one may volunteer. 

Adding a VC component to a grant proposal adds 

uncertainty that may weaken the proposal.  Secondly, 

the model requires that projects publicize themselves.  

This requires resources and skills (media relations, web 

design, outreach) that are not readily available to most 

scientists.  Finally, retaining volunteers requires having 

a steady supply of jobs, and the computing needs of 

many research groups are sporadic. 

The free-market model has also not led to the desired 

volunteer behavior: most volunteers “lock in” to a few 

projects and don’t actively seek out new ones [4].  

Furthermore, the volunteer population is declining.  

Attracting volunteers is a marketing problem. It's 

difficult to do effective marketing when there are 

dozens of competing brands (i.e. project names such as 

SETI@home and IBM World Community Grid). 

2.2  Account Managers 

One problem with the free-market model is that it’s 

inconvenient for volunteers to browse lots of project 

web sites. Instead, we wanted to let volunteers browse 

and select projects on a single “project chooser” web 

site. 

Instead of directly creating such a site, we enabled 

other people to create them. To this end we added a 

mechanism called the “account manager architecture”.  

An account manager (AM) is both a web site and an 

RPC server.  Instead of attaching devices directly to 

projects, volunteers can attach them to an AM.  The 

BOINC client periodically (typically once per day) 

issues an “account manager RPC” to the AM.  The 

RPC reply contains a list of projects to which the client 

should attach.  The client then issues “scheduler RPCs” 

to those projects to get and report jobs; see Figure 1. 

 

 

Figure 1: BOINC’s account manager architecture. 

The AM architecture was used by third-party 

developers to create three project-chooser sites: 

Gridrepublic, BAM!, and GRCPool [5, 6, 8].  These 

AMs did not significantly change volunteer behavior; 

however, the architecture proved to be useful for other 

purposes, as we will show. 

2.3  The coordinated model 

We developed a new “coordinated model” to address 

the problems of the free-market model: in particular, to 

eliminate scientists’ financial risk in creating BOINC 

projects, and to eliminates the need for volunteers to 

evaluate projects.  The model involves a central 

“coordinator”, implemented as an account manager.  

Volunteers interact with the coordinator through its 

web site.  They attach their BOINC clients to the 

coordinator, which in turn dynamically attaches the 

clients to projects.  This assignment can change over 

time; a volunteer may compute for a project that didn’t 

exist when they first registered. 

The coordinator allocates computing power among a 

set of “vetted” projects, and may divide power non-

uniformly among these projects.  Scientists can apply 

to the coordinator to have prospective BOINC projects 

pre-vetted.  At that point they can be offered a certain 

amount of computing throughput; this depends on their 



science area, their location, and what types of 

computing devices their applications can use.  They can 

then proceed to create a project, with minimal risk.  

Projects need not have continuous computing needs. 

The coordinated model differs from the free-market 

model in several important ways.  Volunteers no longer 

directly control the allocation of computing power to 

projects; they need not be aware of the existence of 

projects. Therefore, projects no longer need to 

publicize themselves, or to operate a web site.  Their 

names are no longer “brands”.  The coordinator can act 

as a unified brand for VC.  Publicity campaigns (mass 

media, social media, co-promotions, etc.) can refer to 

this brand, rather than the brands of individual projects.  

This allows more effective promotion. 

The coordinated model doesn’t replace the free-market 

model; the two co-exist.  BOINC projects can operate 

without being vetted by a coordinator, and volunteers 

can attach to such projects even if they’re also attached 

to a coordinator. 

We have implemented a science-oriented coordinator 

called “Science United” (SU), located at 

https://scienceunited.org.  As part of the SU 

registration process, volunteers indicate their “science 

preferences” – which areas of science they do or do not 

want to support – and their preferences for the location 

of the research. This aligns with the motivations of 

most volunteers; support of science goals have been 

shown to be the major reason for participation in VC 

[4].  However, other types of coordinators are possible: 

for example, coordinators that include commercial as 

well as scientific projects, or that reward volunteers in 

virtual currency or in-game credit. 

3   Volunteer preferences in Science United 

3.1  Keywords 

As a basis for SU volunteer preferences, we have 

defined a system of “keywords” for describing jobs.  

The system has the following structure: 

• There are two keyword categories: “science 

area” and “location” (the geographical or 

institutional location of the job submitter). 

• Keywords form a hierarchy: each level N+1 

keyword is a child of a single level N 

keyword.   

• Each keyword has a permanent integer ID, 

and short and long textual descriptions. 

The hierarchy and the descriptions can change over 

time. 

3.2  Keyword preferences 

When a volunteer registers with SU, they specify 

preferences for science areas and locations.  A set of 

preferences maps keywords to {yes, no, maybe}.  “No” 

means don’t run jobs with that keyword.  “Yes” means 

preferentially run jobs with that keyword. 

  

 

Figure 2: The Science United interface for 

specifying preferences. 

When a new keyword is added, the default setting is 

“maybe” for all volunteers.  Volunteers are notified of 

the new keyword so that they can change this if they 

want. 

Active SU volunteers average 4.8 “yes” keywords and 

0.83 “no” keywords.  87% of the keyword preferences 

are for science areas; the remainder are for location. 

3.3  Project and job attributes 

Each project has an associated set of keywords 

describing its science areas and location.  Some 

projects have applications in multiple science areas or 

run jobs on behalf of a multiple client institutions; we 

call these “diverse” projects.  For diverse projects, the 

estimated fraction of jobs having a keyword is 

associated with the keyword.  The set of project 

keywords can change over time, reflecting changes in 

the project’s workload. 

Volunteer preferences may be enforced at the project 

level.  If a project has a keyword with job fraction 1, 



and a volunteer has specified “no” for that keyword, the 

volunteer’s devices may not be attached to that project.  

For diverse projects, preferences must be enforced at 

the job level; a volunteer may be willing to run some 

jobs but not others.  For such projects, jobs have an 

associated set of keywords, specified in the job 

submission process.  For example, if a job is submitted 

by a cancer researcher at UC Berkeley, the attributes 

would include “cancer research” and “UC Berkeley”. 

In this case, volunteer preferences are enforced by the 

project’s BOINC job dispatcher.  In deciding which 

jobs to send to a device, the dispatcher computes a 

“score” for each job that includes a number of different 

factors; it then sends the highest-scoring jobs.  We 

extended this to include keywords.  For each of the 

job’s keywords, if the volunteer has “yes” the score is 

incremented, and if “no” the job is not sent. 

4   Dividing computing power 

The central function of SU is to divide computing 

power among projects.  It does this by assigning 

projects to volunteer devices.  These assignments can 

change each time the device issues an AM RPC 

(typically once per day). 

The assignment policy has several goals: 

• To honor volunteer keyword preferences by 

preferentially assigning projects with the 

volunteer’s “yes” keywords. 

• To allow projects to be allocated different 

shares of the resource pool (see below). 

• To maximize total throughput.  For example, if 

a host has a GPU, it should be assigned at least 

one project that can use the GPU. 

These goals are possibly conflicting; for example, a 

project with a large share may have keywords with few 

“yes” preferences.  The policy should balance these 

conflicting goals. 

This section describes the factors in more detail, and 

concludes by describing the assignment policy. 

4.1  Platforms and processing resources 

A project may not be able to use all volunteer devices.  

Each device supports one or more “platforms” 

(Windows/x64, Mac/x64, Linux/ARM, etc.) and has a 

set of “processing resources”, including a CPU and 

possibly one or more GPUs of various vendors 

(NVIDIA, AMD, Intel). In addition, a device may have 

virtualization software (VirtualBox) installed. 

Each BOINC project has a set of “app versions”, each 

of which runs on a particular platform, uses a specific 

set of processing resources, and may require 

VirtualBox.  Depending on its app versions, a project 

may not be able to use a device at all, or it may be able 

to use only a subset of the device’s processing 

resources. 

When an account manager such as SU instructs a 

BOINC client to attach to a project, it can specify a set 

of processing resources for which the client should 

request work.  Thus, for example, SU can tell the client 

to get CPU jobs but not GPU jobs from the project. 

4.2  Project shares 

SU allows some projects to be given more computing 

resources than others. 

Let M(P) denote the maximum possible rate of 

computing for a project P, given SU’s current resource 

pool.  M(P) is determined by P’s keywords and 

applications.  P can use a device D only if P’s keywords 

are compatible with the preferences of D’s owner, and 

it can use D’s processing resources (CPU and GPUs) 

only if it has appropriate applications.  Thus M(P) can 

vary widely between projects. 

In SU, each project P has a “share” S(P).  Shares are 

assigned administratively (see Section VI), and may 

change over time.  Roughly speaking, S(P) determines 

how much computing is available to P compared to 

other projects with similar M(P), over a time scale on 

the order of 1 week. 

4.3  Resource usage accounting 

SU does accounting of processing resource usage.  This 

serves several purposes: it provides a basis for 

enforcing project shares, it gives an estimate of the 

system-wide throughput, and it provides basis for 

volunteer incentive such as graphs of work done 

recently, work “milestones”, and so on. 

BOINC has a sophisticated credit system for estimating 

the FLOPs performed by completed jobs.  It is fairly 

“cheat-proof”: it is difficult to get credit for 

computation not actually performed.  However, the 

system is based in part on job replication, so credit for 

a job may not be granted until the companion job is 

completed, which could take weeks.  This makes it 

unsuitable for SU’s purposes. 

Instead, SU uses a quantity called “estimated credit” 

(EC), which is maintained by the BOINC client on a 

per-job and per-project basis, based on the runtime of 

jobs and the peak FLOPS of the processors they use.  



EC is a cruder estimate than credit, and it is not cheat-

proof.  But it accumulates continuously, with no need 

to wait for job completion or validation. 

4.4  Share-based prioritization 

SU enforces project shares by prioritizing projects that 

haven’t used their share of resources recently.  It 

maintains, for each project P, its average rate of 

computing over the last week, A(P).  We then let 

𝐴𝑓𝑟𝑎𝑐(𝑃) = 𝐴(𝑃) ∑ 𝐴(𝑄)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑄

⁄   

Afrac(P) is the fraction of total computing done by P.  

Similarly, let 

𝑆𝑓𝑟𝑎𝑐(𝑃) = 𝑆(𝑃) ∑ 𝑆(𝑄)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑄

⁄   

Sfrac(P)  is P’s fraction of the total share.  We then let 

𝐸(𝑃) =  𝐴𝑓𝑟𝑎𝑐(𝑃) 𝑆𝑓𝑟𝑎𝑐⁄ (𝑃) 

E(P) represents the excess computing that P has 

received, relative to its share, over the last week.  It is 

used to prioritize projects in the assignment algorithm 

(see below).  At any point, computing resources are 

preferentially assigned to projects P for which E(P) is 

least. 

This model handles both continuous and sporadic 

workloads well.  For a project P with sporadic 

workload, E(P) will usually be near zero.  When P 

generates a burst of work, it will have priority over the 

continuous-workload projects, and the work will get 

done quickly. 

When a computer is assigned to a project, there will be 

a delay of about a day (the client polling period) until 

computation is reported to SU by clients.  This means 

that the same project (the one for which E(P) is least) 

will be assigned to all hosts during that period.  This is 

undesirable.  To solve this problem, we dynamically 

adjust A(P) by an appropriate amount when a computer 

is attached to or detached from P.  At the end of each 

accounting period, A(P) is reset based on the 

accounting history. 

4.5  Preventing device starvation 

When SU assigns a project to a device, it assumes that 

the project can supply jobs that use the given 

processing resources.  But this may not be the case.  

The project may be temporarily down, it may not have 

jobs using the target resources, or its jobs that use the 

target resources may have keywords disallowed by the 

user’s preferences.  This can lead to device starvation 

(idle device instances). 

To address this problem, the BOINC client keeps track 

of (project, resource) pairs that are temporarily 

starved: that is, for which the last scheduler RPC 

requested work for the given resource, but none was 

returned.  The list of temporarily starved (project, 

resource) pairs is included in the AM RPC request, and 

is used by the assignment algorithm (see below) to 

prevent device starvation. 

4.6  Assignment algorithm 

BOINC clients using SU periodically (once per day) 

issue an AM RPC.  The request message includes a list 

of currently-attached projects and their CPU and GPU 

EC totals; these are used to update accounting records.  

The reply message includes a list of projects to attach 

to.  The client detaches from any projects not on this 

list, after completing pending jobs.  For each project, 

the reply specifies a “resource share”: a value of zero 

means that the client should do work for this project 

only if none of the other projects have work available. 

Being attached to a project has a disk overhead; the 

client caches applications files for the project, which 

may include large VM image files.  Hence we want to 

limit the number of projects to which each client is 

attached.  On the other hand, if a project has a large disk 

footprint on a client, we may want the client to remain 

attached, with a zero resource share, so that files don’t 

need to be downloaded again the next time the project 

is attached. 

With these factors in mind, here is a sketch of the 

project assignment algorithm currently used by SU: 

First, we discard projects that can’t be used, either 

because of keyword preferences or because the project 

doesn’t have app versions that can use the device.  We 

compute a “score” for each remaining project.  This 

score is the weighted sum of several components: 

• A keyword factor.  Increment the score if the 

project has keywords in the volunteer’s “yes” 

list 

• Subtract the project’s allocation balance E(P). 

• Increment the score if the host is already 

attached to the project. 

The weights for each of these terms have been chosen 

empirically. 

Then, for each processing resource R, we find the 

highest-scoring project that can use R.  This is the set 



of projects to be attached.  If the client is currently 

attached to a project not in this set but whose disk 

footprint exceeds a threshold (currently 100 MB) and 

whose score is nonzero, we tell the client to remain 

attached with zero resource share. 

5    Implementation and status 

SU is implemented in PHP.  It uses a MySQL database 

to store volunteer and project information, accounting 

data, and so on.  The SU source code is distributed 

under the LGPL v3 license and is available on Github. 

SU required some modifications to the BOINC client, 

such as the starvation monitoring described in section 

IV. These changes are in the current client release 

(7.14). 

Science United was launched in 2018.  Currently it has 

about 1400 volunteers and 1800 computers, of which 

1500 have usable GPUs.  These computers process 

about 50,000 jobs per day and have a throughput of 

roughly 200 TeraFLOPS.  Figures 3 and 4 show recent 

throughput histories for CPU and GPU respectively.  

Projects such as Rosetta@home appear only in the 

CPU graph because they have no GPU app versions. 

 

 

Figure 3: CPU throughput of the top projects over 

the last two months. 

 

Figure 4: GPU throughput of the top projects over 

the last two months. 

 

5.1  Administration and policies 

We plan to establish a committee to determine 

coordinator policies, including project vetting and 

resource allocation.  The committee may include 

representatives of scientific funding agencies, leaders 

of the coordinator project, and members of the 

volunteer community.  The committee will decide what 

projects to vet, based on criteria such as: 

• The project’s computing is directed toward a 

scientific or technical goal (broadly 

interpreted to include things like mathematics 

and cryptography). 

• The project is non-commercial. 

• The project’s leadership has a certain level of 

qualification (as demonstrated, e.g., by 

publications). 

• The project can prove that it follows various 

security practices, such as application code-

signing on secure offline machines. 

The committee will define a process by which potential 

new projects can apply for vetting.  A scientist or 

organization could apply for vetting, then submit a 

grant proposal to fund the development of the project.  

The committee will assign shares to vetted projects, 

based on need, merit, or other factors. 

6   Future work 

6.1  Throughput guarantees 

In some existing HTC systems, a user can be 

guaranteed a minimum throughput over a given period 

of time with high probability.  Can we offer analogous 

guarantees with VC resources? 



The performance of a pool of volunteer computers 

varies over time, in terms of both throughput and job 

latency.  However, with a large pool, these quantities 

change slowly, and we can establish the statistics of this 

change.  For example, given the total throughput T at a 

given time, we could find a T0 < T such that total 

throughput will remain above T0 for a week with a 

given confidence level. 

Similarly, given a Science United resource pool and a 

particular set of projects and shares, the throughput 

seen by a project should remain fairly constant over 

time.  These throughputs can be manipulated, within 

limits, by changing shares. 

How can we predict, given a particular set of project 

shares, how much throughput each project will get?  

This depends on many factors: app versions, keywords, 

the project assignment algorithm, and so on.  It’s 

unlikely that it can be determined analytically.  Instead, 

we plan to implement an emulator that does a trace-

based simulation of the entire SU system, using the 

code of the RPC handler, and predicts the throughput 

of each project.  Using this emulator we will be able to 

compute a mapping from project shares to project 

throughput, and to find project shares for which a 

particular project achieves a given throughput.  This 

will provide a basis for guaranteeing throughput to 

projects over fixed periods. 

Such guarantees would be project-level.  Can we 

provide performance guarantees to a particular job 

submitter within a project that serves multiple job 

submitters?  This is more complex but it may be 

possible.  The BOINC server software allocates 

resources among computing job submitters within the 

project.  It’s possible that the combination of a project-

level allocation and a submitter-level allocation can 

provide some form of performance guarantee to the 

submitter. 

 

7   Conclusion 

We have explained the problems with BOINC’s 

original “free market” framework for volunteer 

computing and have described the coordinated model 

and its implementation in Science United.  We hope to 

increase the resrouce pool to the point where its 

throughput is comparable to data-center HTC providers 

– perhaps tens of PetaFLOPS.  At that point the key 

goal of the coordinated model – eliminating risk to 

prospective new projects – will be realized, hopefully 

resulting in a broader adoption of volunteer computing. 
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